
XPM

The X PixMap Format

Arnaud Le Hors & Colas Nahaboo

lehors@sophia.inria.fr

colas@sophia.inria.fr

BULL Research FRANCE { Sophia Antipolis

November 1991

1 Introduction: Why another image format?

As many X programmers, when we began to try to include color images in our X

programs, we were faced with a plethora of image formats to choose from. We thought

that each of these formats had been designed to handle big (typically more than

600x400 pixels), colorful (with at least 8 bit colormaps) images. However, we soon

found that we had di�erent needs, and thus these image formats were somewhat

inadequate. We thus designed the XPM (X PixMap) icon format, and re�ned it

thanks to the international X community. We feel that it is mature enough now to be

proposed to the X consortium to be included in the standard MIT tape. This paper

describes this third version of the XPM format.

2 Why is there no standard image format?

At �rst glance, one may think that a single image format could encompass all the

needs of computer graphics professionals. The problem is that in most cases, images

must be handled very e�ciently, and thus the image format chosen often closely

re
ected the underlying hardware, as is the case for most formats coming from the

PC world (e.g. GIF, IFF's ILBM, Mac resources). In the academic world, there is

nearly one format per research team. The situation has stabilized, the formats can

be grouped into three classes:

1. the working format: the one that is most adapted to the application or graphics

hardware and software. In our X world, this can be thought of as the XWD

format (XWindow Dump, which is derived from the memory structure XImage).

Raster�les on Sun workstations and GIF �les on PCs are example of formats

re
ecting the underlying hardware.

1

2. the storage format: one that is often chosen for its built-in picture compression

facility. Gif (and perhaps Ti� in the future) seems to play this role nowadays.

3. the interchange format: the one chosen to ease the writing of conversion pro-

grams between this format and any other. One good example of this pivotal

format is Je� Posanker's pmbplus package.

3 The characteristics of icons

What we really need is an icon format rather than an image format. In a typical

application one often want a lot a small images, which can be either elements of the

decoration (for a 3D look), buttons to press on, or \road signs" to convey information.

These images have di�erent characteristics such as being small, numerous, stylized,

and customizable.

Also an icon is composed of several objects associated with single colors. If you

consider for instance a 3D button you may de�ne �ve objects: front, top, bottom,

left, and right faces (�gure 1.1). We need to be able to specify the way the colors

associated with the di�erent objects composing the icon are changed depending on

the type of visual it is displayed on. For instance, on a color visual we may have a 3D

button with white left and top faces, a gray front face, and black bottom and right

faces. Displayed with the same colors on a black & white visual it would be: white

left and top faces, a white front face, and black bottom and right faces (�gure 1.2).

This is not satisfactory because we would rather have: a white front face, and black

side faces (�gure 1.3).

We also need to be able to override built-in colors in order to let the user change them.

For instance if we de�ne an application interface with 3D buttons, we need to let the

user rede�ne the colors used to keep the 3D look if the application is customised to

be within green or blue shades.

In addition we want to have transparent colors to be able to de�ne non-rectangular

icons. One application of this is to de�ne cursors. Indeed so far cursors are two

colors only and are de�ned with two bitmaps: the source specifying the foreground

and the background colors, and the mask specifying the shape (these are stored in

two di�erent �les). This could be handled by a single icon in which the outer pixels

are de�ned as transparent. Furthermore having cursors de�ned with such icons would

provide support for future multicolor cursors.

With cursors comes the need to have hotspot information associated with the icon, but

this is not the only case for which such an information can be useful. In particular, we

may want to make animation sequences by putting several icons, one after the other,

at the same place. To do so we need to have a hotspot related to the icons to know

how to place them. For example to animate a warning sign by growing and reducing

it, one needs to have a hotspot to easily center the icons whatever their size.

2

3D Button

1. On a color visual

3D Button

2. On a black & white visual with the same colors

3D Button

3. On a black & white as we would like it

Figure 1: A 3D look button

3

4 The XPM format

The XPM format presents a C syntax, in order to provide the ability to include

XPM �les in C and C++ programs. It is in fact an array of strings composed of six

di�erent sections as follows:

<Header line>

<Declaration and Beginning of Assignment line>

<Values>

<Colors>

<Pixels>

<Extensions>

<End of Assignment>

The <Header line> is a comment containing the keyword XPM as follows:

/* XPM */

The words are separated by a white space which can be composed of space and

tabulation characters.

The <Declaration and Beginning of Assignment line> must end by a newline

character and is composed as follows:

static char* <variable name>[] = f

The <Values> section is a string containing four or six integers in base 10 that cor-

respond to: the pixmap width and height, the number of colors, the number of char-

acters per pixel (so there is no limit on the number of colors), and, optionally the

hotspot coordinates.

<width> <height> <ncolors> <cpp> [<x hotspot> <y hotspot>]

The Colors section contains as many strings as there are colors, and each string is as

follows:

<chars> f<key> <color>g+

Where <chars> is the <chars per pixel> length string (not surrounded by anything)

representing the pixels, <color> is the speci�ed color, and <key> is a keyword de-

scribing in which context this color should be used. Currently the keys may have the

following values:

m for mono visual

s for symbolic name

g4 for 4-level grayscale

g for grayscale with more than 4 levels

c for color visual

4

Colors can be speci�ed by giving the colorname, a # foolwed by the RGB code, or a

% followed by the HSV code. The symbolic name provides the ability of specifying

the colors at load time and not to hard-code them in the �le. Also the string None

can be given as a colorname to mean \transparent". Transparency is handled by

providing a masking bitmap in addition to the pixmap.

The <Pixels> section is composed by <height> strings of <width> * <chars per pixel>

characters, where every <chars per pixel> length string must be one of the previ-

ously de�ned groups in the <Colors> section.

Then follows the <Extensions> section which is empty so far but may contained

several strings in future.

Finally the <End of Assignment> section ends the format with a closing brace \g".

Below is an example which is the XPM �le of a plaid pixmap. This is a 22x22 pixmap,

with 4 colors and 2 characters per pixel. The hotspot coordinates are (0, 0). There

are symbols and default colors for color and monochrome visuals.

/* XPM */

static char * plaid[] = {

/* plaid pixmap

* width height ncolors chars_per_pixel */

"22 22 4 2 0 0",

/* colors */

" c red m white s light_color ",

"Y c green m black s lines_in_mix ",

"+ c yellow m white s lines_in_dark ",

"x m black s dark_color ",

/* pixels */

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

"Y Y Y Y Y x Y Y Y Y Y + x + x + x + x + x + ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x x x x x x x x x x x x x ",

"x x x x x x x x x x x x + x x x x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x ",

"x ",

" x x x x Y x x x ",

5

" x x x Y x x ",

" x x x x Y x x x ",

" x x x Y x x ",

" x x x x Y x x x "

} ;

5 Advantages and limitations

The major advantage of the XPM format compared to the other image formats is, of

course, that it handles the peculiar icon needs we have described earlier. Below is an

XPM �le de�ning a 3D button where the symbol top&left for the top and left faces

has two default colors: white for color visual and black for monochrome, which gives

us the desired e�ect (see �gures 1.1 & 1.3).

/* XPM */

static char * 3D-button [] = {

"30 20 3 1",

" s top\&left c white m black",

"X s bottom\&right c black",

". s front c gray",

" ",

" X",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

"XX",

" XXXXXXXXXXXXXXXXXXXXXXXXXXXXX",

"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"};

However, this format still has some limitations. There is, for example, no provision

for resizing an icon although we can think of cases for which this would be useful.

This happens typically when the icon is associated to another object, which can be

resized. For instance if a sign is associated with a button, the sign should be resized

in the same way as the button. The resize operation of course can be done by the

6

application with some pixmap scaling routine but, in fact, as colors are speci�ed for

the di�erent visuals, the way we want an icon to be resized may be not obvious.

Indeed, instead of just scaling it, which can give poor results, one wants to modify

it in order to keep it as clear as possible. For example one may add colors to have

better anti-aliasing. In the same way big fonts are not obtained by scaling small fonts

(�gure 2). But we think that it is a problem which can only be addressed by higher

level format such as PostScript or TeX's Metafont system.

Times Bold 24 Times Bold 12 Times Bold 8

Figure 2: Big fonts are not obtained by scaling small fonts

Also XPM does not provide anything to manage collections of icons, which one may

need to deal with animations made from several icons. However we think that this

issue can be addressed with some external mechanism such as the unix archive main-

tainer ar or with some structure such as the XFont structure which is already used

to manage a collection of cursors bitmaps and that could be added as an extension

to the basic format. Besides we also think compression must be handled outside the

format. At the present time the XPM library supports compression on unix platforms

by using the standard unix compress program as a �lter. Furthermore we think that

using external tools to provide such features clearly separates the di�erent problems

and allows us to change them if needed.

6 XPM and the Xlib

The XPM library provides a set of Xlib-level functions which allows us to deal with

images, pixmaps, XPM �le, and data (included XPM �le) in many ways (�gure 3).

All of them provide the same kind of interface, to give an example we describe below

the XpmReadFileToPixmap function which creates a pixmap and possibly its shape

mask from an XPM �le as described below:

int XpmReadFileToPixmap(display, d, �lename,

pixmap return, shapemask return, attributes)

Display *display;

Drawable d;

7

Xpm file

Pixmap

XImage

Xpm Data

Application

1, 2 3, 4

5, 6

7, 8

1. XpmReadFileToPixmap
2. XpmWriteFileFromPixmap
3. XpmReadFileToImage
4. XpmWriteFileFromImage
5. XpmCreatePixmapFromData
6. XpmCreateDataFromPixmap
7. XpmCreateImageFromData
8. XpmCreateDataFromImage
9. include file

9

X Server

Figure 3: The Xpm library functions

8

char *�lename;

Pixmap *pixmap return;

Pixmap *shapemask return;

XpmAttributes *attributes;

display Speci�es the connection to the X server.

d Speci�es which screen the pixmap is created on.

�lename Speci�es the �le name to use.

pixmap return Returns the pixmap which is created.

shapemask return Returns the shapemask which is created, if any.

attributes Speci�es the location of an XpmAttributes structure

to get and store information.

To use this function in its simplest way the caller can ignore the mask pixmap and the

attributes structure by giving NULL pointers, he will get a pixmap as described in

the speci�ed �le and built with default values for attributes such as the colormap, the

visual, etc. Otherwise these values can be explicitly speci�ed by using the XpmAt-

tributes, which contains a valuemask in order to let the caller specify which attributes

are set. It is also through this structure that the colors can be overridden, the hotspot

retrieved, as well as many other things.

The XpmAttributes structure is de�ned as follows:

typedef struct f

unsigned long valuemask; /* Speci�es which attributes are de�ned */

Visual *visual; /* Speci�es the visual to use */

Colormap colormap; /* Speci�es the colormap to use */

unsigned int depth; /* Speci�es the depth */

unsigned int width; /* Returns the width of the created pixmap */

unsigned int height; /* Returns the height of the created pixmap */

unsigned int x hotspot; /* Returns the x hotspot's coordinate */

unsigned int y hotspot; /* Returns the y hotspot's coordinate */

unsigned int cpp; /* Speci�es the number of char per pixel */

Pixel *pixels; /* List of used color pixels */

unsigned int npixels; /* Number of pixels */

XpmColorSymbol *colorsymbols; /* Array of color symbols to override */

unsigned int numsymbols; /* Number of symbols */

char *rgb fname; /* RGB text �le name */

/* Infos */

int ncolors; /* Number of colors */

char ***colorTable; /* Color table pointer */

char *hints cmt; /* Comment of the hints section */

char *colors cmt; /* Comment of the colors section */

char *pixels cmt; /* Comment of the pixels section */

unsigned int mask pixel; /* Transparent pixel's color table index */

g XpmAttributes;

9

7 XPM and the Toolkits

In order to address the problem of customizing applications using icons, we are in

the processing of de�ning and providing toolkits with a string to pixmap converter.

This allows one to specify via the X resources the XPM �le to use and the colors to

override.

8 History and perspectives

In April 1989, Colas Nahaboo and Daniel Dardailler, from the Bull Koala Team,

designed the �rst version of the XPM format based on the X BitMap format, Daniel

also developed a �rst library providing functions similar to the ones provided by the X

library to deal with bitmaps. It was �rst distributed in June 1989 via public ftp and as

part of GWM (Generic Window Manager), developed by Colas, which has been part

of the X11 contrib since R4. In October 1990, Arnaud Le Hors and Colas designed

the second version of XPM. It handled multiple syntax in order to be includable in

languages other than C, such as Lisp, and the major improvement of symbolic colors

with multi-defaults for di�erent visual types. A new library supporting the new

features was developed by Arnaud and distributed via public ftp. Several releases

of the library succeeded one another. A \Birds of a feather" was chaired at the X

conference in January 1991 where XPM appeared to satisfy most of people who use

it in several applications. After many discussions on a mailing list in April 1991 the

third version is proposed where the multiple syntax feature, which adds complexity

and appears not to be actually used, is removed. This new version also provides two

new features: hotspot information (optional coordinates) and transparent color. A

new library providing a full set of functions with a simple and homogeneous interface

was then developed and given as an R5 contrib at the beginning of November 1991.

In addition Lionel Mallet from Simulog has developed, and given as an R5 contrib

too, an XPM editor which is based on the bitmap editor developed by Davor Matic

from Mit and which supports most features of the format.

As XPM seems to become a de-facto standard within the X community, we are plan-

ning to give it to the MIT for inclusion in the MIT X tape (Xmu library), and to

submit it as an X Consortium standard.

9 Conclusion

Among all the existing image formats none addresses the peculiar needs of icons, we

think XPM �lls in this gap in the X library software. The number of applications

1

using it proves this.

1

such as ICS Xcessory, IXI X.desktop, most window managers, etc.

10

References

[1] MIT X Consortium Standard Xlib - C Language Interface. Part of the documen-

tation provided with X Window System Version 11 Release 5, 1991.

[2] Bull Koala Team, Arnaud Le Hors XPM Manual - The X PixMap Format Doc-

umentation provided with XPM Version 3.0 November 1991.

11

